

Brand Name		E-COPPER				
Material Code		2.0060				
Abbreviation		Cu-ETP (formerly: E-Cu57)				
	Chemical Composition (mass components) in % Average values of alloy components					
Cu						
≥ 99.9						

Form of Delivery

E-COPPER is supplied in the form of round wires in the range 3.0 to 0.1 mm \emptyset in bare condition.

To a limited extent insulated wires, stranded wires and strips are also manufactured.

Properties and Application Notes

E-COPPER is especially characterized by high conductivity and relatively high corrosion resistance. Like all pure metals, E-COPPER has a high temperature coefficient. The most important properties are listed only for reasons of completeness.

Copper is normally supplied for thermocouples and compensation cables as well as bimetal-heaters.

The maximum working temperature in air is 150 °C. When used as wire for thermoelectric applications, the maximum temperature can be up to 350 °C.

Electrical Resistance in Annealed Condition

Temperature coefficient of electrical resistance between	Electrical resistivity $^{1)}$ in: $\mu\Omega$ x cm (first line) and Ω /CMF (second line) Reference Values						
0 °C and 100 °C 10 ⁻⁶ /K	20 °C	100 °C	200 °C	300 °C	400 °C	500 °C	
approx. +4300	1.72 10	2.3 14	3.1 19	-	-	-	

Physical Characteristics (Reference Values)

	nsity 20°C	Melting Point	Specific heat at 20 °C	Thermal conductivity at 20 °C	expansion coeff	Average linear thermal expansion coefficient between 20 °C and 100 °C 400 °C	
g/cm³	lb/cub in	°C	J/g K	W/m K	10 ⁻⁶ /K	10 ⁻⁶ /K	μV/K
8.9	0.32	1083	0.38	390	17.5	18.5	0

Strength Properties at 20 °C in Annealed Condition

Tensile Strength ²⁾		Elongation ($L_0 = 100 \text{ mm}$) % at nominal diameter in mm				
MPa	psi	0.02 to 0.063	>0.063to0.125	> 0.125 to 0.5	> 0.5 to 1	>1
200	29000	≈ 10	≈ 15	≈ 20	≥ 25	≥ 30

- 1) The resistivity at 0 °C is 1.56 $\mu\Omega$ x cm.
- 2) This value applies to wires of 2 mm diameter. For thinner wires the minimum values will substantially increase, depending on the dimensions.

General Note

E-COPPER is not a standard resistance alloy. Therefore no resistance values are quoted. The weight values correspond to those of ISOTAN® wires of the same diameter.

Notes on Treatment

E-COPPER can be worked easily. This alloy can be soldered and brazed without difficulty. All known welding methods can be used.