

Amplifiers | Packages-Hybrid

Hermetically Sealed

- 100% testing over temperature extremes
- Gross and fine leak
- Constant acceleration up to 10,000 g
- 160 hour burn-in at 125°C

• Ceramic Surface Mount (QBH-8000 series)

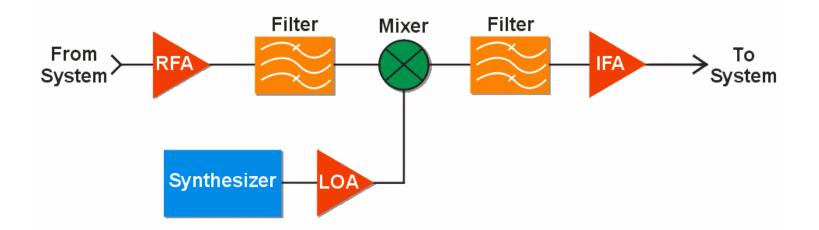
- Alumina substrate and cover
- Thick film metallization
- Utilize both chip & wire, and SMT components
- 100% testing at 125°C

Generation II (QBH-2000 series)

- Soft substrate (PTFE) designs
- Strictly surface mount components
- Assembled with Sn96

Standard Commercial

- Developed by large manufacturers (i.e. Motorola, Philips)



Amplifiers | Performance

Gain Blocks

- Frequency Range: 1 MHz to 18 GHz
- RF/IF drivers and LO buffer amps in Integrated Microwave Assemblies (IMAs)
- Transistor die extended operating temperature range, -55°C to +125°C
- Power feedback below 1.5 GHz high reverse isolation reducing load sensitivity (QBH-1401)
- Frequency selective matching circuits reduces "out-of-band" gain
- Improved efficiency with autotransformers and current sharing
- Low phase noise
- LCA package for cost sensitive programs (< \$35)

Amplifiers | Hi-Reverse Isolation

- Palm Bay (previously Q-bit) Hi-Reverse Isolation designs are typically 10-15 dB better than general RF amplifiers
- Excellent in Synthesizers, Exciters and Oscillator Assemblies
- Often saves customer the price and real estate of an isolator

Amplifiers | Low Noise Performance

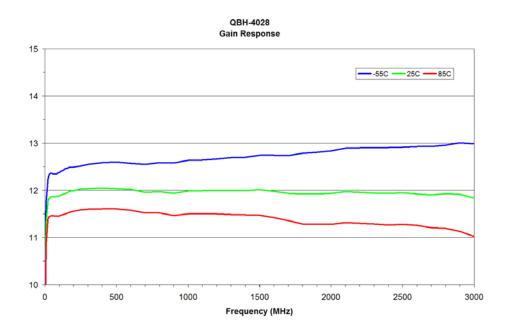
Low Noise Amplifiers

- 10 MHz to 6000 MHz
- Low frequency (<500 MHz) designs generally use silicon bipolar transistors and incorporate the low loss benefits of power feedback to adjust gain and VSWR
- High frequency (>500 MHz) designs based on GaAs MESFET and PHEMT technology
- Integrate high Q components (I.e. air coils, low ESR caps)
- Discrete first stage followed by MMICs

• QBH-920

- 30-200 MHz
- 1.4 dB typical noise figure
- 8.0 dB gain
- 3rd/2nd order IP: 42/59 dBm
- +15.0 Vdc/29 mA

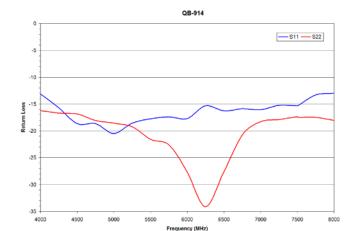
• QBH-2001

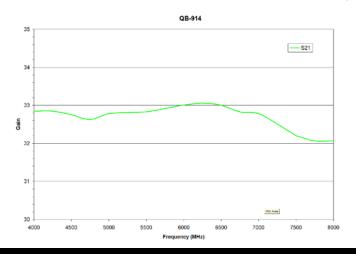

- 1200-1600 MHz
- 0.85 dB noise figure
- 22.0 dB gain
- +3.0 dBm P1dB
- +5.0 Vdc/40 mA

Amplifiers | Broadband Performance

Broadband

- Combine low Q resistive feedback networks, voltage shunt and current series, to establish gain window and input/output VSWR
- Use discrete Silicon Bipolar or GaAs MESFET/PHEMPT devices in die form to tightly control the parasitic inductance of wire bonds




Amplifiers | Low Noise Amplifiers

• QB-914

- 4.0-8.0 GHz

- Gain: 32 dB typical
- NF: 1.8 dB
- P1dB: 17 dBm
- 3rd order IP: 23 dBm
- +12 Vdc/125 mA

Amplifiers | High Dynamic Range Performance

High Dynamic Range

- Relatively low noise with excellent linearity (low distortion)
- Bias medium power transistors (<4 watts) at 10-20% loss to achieve an optimum tradeoff between noise figure and distortion
- Low frequency (<200 MHz) designs push-pull configuration using Si bipolar devices in a patented feedback topology (QB-101)
- Used as the input stage in multi-carrier receivers. Allows reception of large input signals without distorting the amplifier output.

• QB-101

- IF Amplifier
- 2-70 MHz
- 22.0 dB gain
- 4.0 dB Noise Figure
- 3rd/2nd Order
 - Output IP3 +54 dBm
 - Output IP2 +110 dBm
- +24 Vdc/400 mA

• QBH-5674B

- Military/Space
- 3.0-4.0 GHz
- 15.0 dB gain
- 1.7 dB Noise Figure
- +36.0 dBm 3rd Order OIP

Amplifiers | Architecture/Topologies

RF IN

Resistive Feedback

- Ultra wideband with performance over multiple octaves
- Reverse isolation is typically 6 dB higher than the gain
- Easy to integrate making it ideal for multiple gain stages in a small package

Resistive Feedback

- Use twisted-wire transformers, printed 3 dB hybrids, or Lange couplers to combine parallel stages, 90° out of phase
- Maintain excellent input/output VSWR while intentionally mismatching the RF transistor to optimize noise figure, output power, and distortion
- Redundant design if a branch fails, noise figure increases 3 dB and gain drops about 6 dB

Push-Pull

- Baluns (**bal**anced to **un**balanced) connect parallel cascode stages 180° out of phase
- Broadband with excellent gain stability and linearity, especially the 2nd Order OIP. Configuration theoretically cancels even-harmonic distortion products

Amplifiers | Ultra Low Phase Noise Performance

Ultra Low Phase Noise

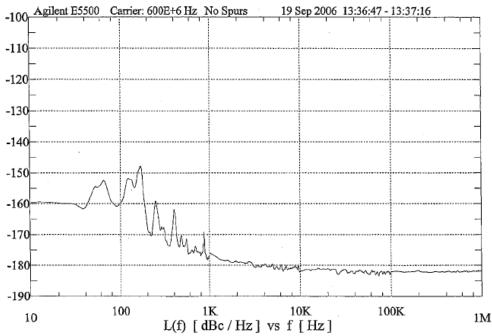
- We achieve **guaranteed** (100% tested) performance using high performance silicon bipolar transistors in unique circuits up to 2 GHz

Benefits

- Improves error rate in telemetry apps
- Improved sub-clutter visibility in radar apps
- Better signal to noise ratio in receivers

TM9119PM

Frequency	Typical	Guaranteed
100 Hz	-165	-160 dBc/Hz
1 kHz	-172	-167 dBc/Hz
10 kHz	-177	-172 dBc/Hz
100 kHz	-179	-174 dBc/Hz
1 MHz	-180	-175 dBc/Hz

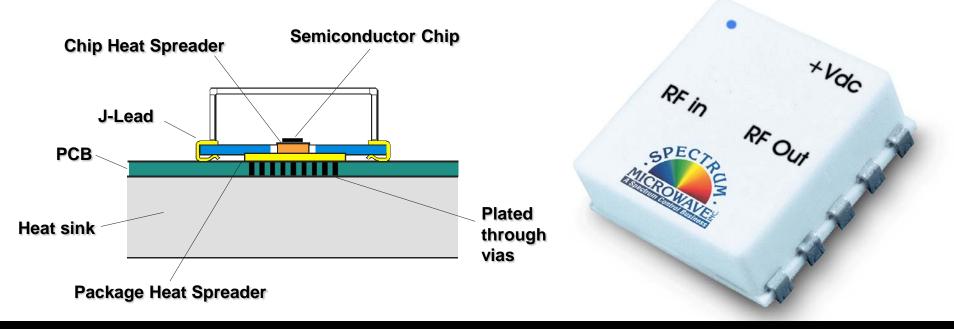

Spectrum is the only hybrid amp manufacturer that guarantees low-phase noise performance on it's standard line of parts. We've invested heavily in high-performance test equipment including Agilent network analyzers, low-phase noise signal generators, an enhanced Agilent ES5500 phase noise measurement system, and additional in-house environmental test equipment

Amplifiers | Ultra Low Phase Noise Performance

- Ultra Low Phase Noise
- Guaranteed performance (100% lot testing) up to 6.0 GHz

• Frequency <2 GHz

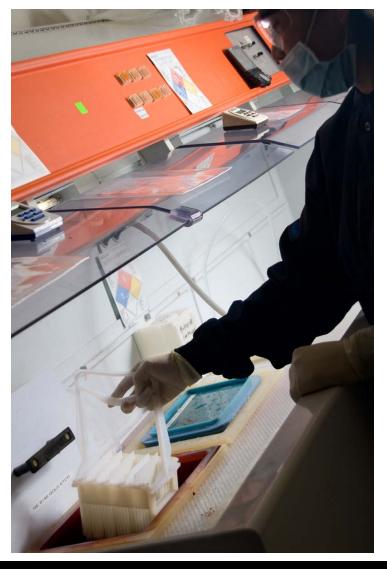
- Use silicon **bipolar transistors.** Combine multiple die with high f_t in parallel to achieve bandwidth and power


600 MHz @ Pout = +24 dBm

Amplifiers | Ceramic Lower Cost Amplifiers

Ceramic Surface Mount Hybrid

- Units shipped in feeder tubes, or tape & reel for automated PCB assembly
- Able to convert designs in hermetic packages into cost-effective surface mount solutions for the customer without performance degradation
- Excellent thermal characteristics RF transistor is eutectically attached to a copper carrier, which is soldered directly to the package heat spreader

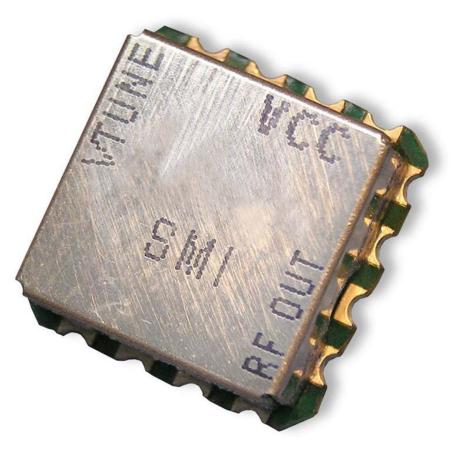

Amplifiers | Ceramic Lower Cost Amplifiers

• PCB Materials: Thin Film

- High circuit density with fine line geometries
- Purchase metallized substrates Alumina (99.5%), BeO and AIN
- State College facility capable of etching circuit patterns with an accuracy of 2.0 mil wide lines and 2.0 mil spacing

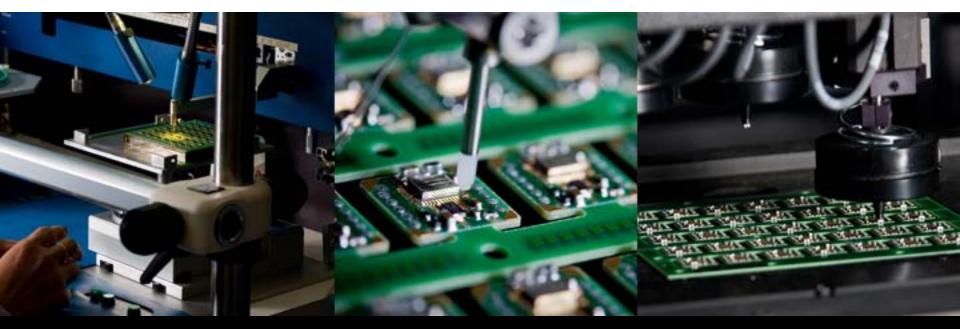
PCB Materials: Thick Film

- Purchase Alumina (96%) substrates with machined vias and/or slots for transistor carriers
- Screen print and fire the circuit pattern with the following pastes:
 - Gold wire bonding
 - Palladium silver solder chip components, thermocompression (TC) welding
 - Resistive pastes bias networks/attenuators
- Thick film copper available for high volume applications



Amplifiers | Generation II Package

Generation II Product


- Packaged in tape & reel for pick and place applications.
- Completely automated assembly with a single reflow to attach components and cover
- No tuning / alignment
- Metal cover provides circuit isolation
- LNA and lower power (P1dB < 26 dBm) designs
- Intended for high volume applications; price < \$15

Amplifiers | Ceramic Lower Cost Amplifiers

LCA assembled with high volume processes

- Extensive use of fixtures
 - Screen print solder paste in the array
 - Align and reflow backside heat spreader in the array
 - Eutectic attach transistor in SST (vacuum reflow) using carbon "boats" to align die on copper carrier, 20x20 matrix or larger
- Automated pick & place of chip components in the array
- Autobonder

Amplifiers | Ceramic Lower Cost Amplifiers

Provides Cost Effective Solution

Customer's needs	Spectrum's LCA	MMICs
Never Obsolete	✓	End-of-life / Next generation forces system redesign.
True 50 Ohm Match	\checkmark	Additional components means additional design time and Real Estate.
Superior Phase Noise	\checkmark	Not tested or guaranteed in production.
Guaranteed Performance -55⁰C to +85⁰C	✓	Always Typical Values / Graphs.
No External Components Needed	\checkmark	Blocking caps are just the beginning
Low Cost	\checkmark	\checkmark

- Frequencies to 4000 MHz
- Output power to 4 watts
- Noise as low as 0.8 dB
- No external biasing or RF matching circuits required
- Available in tape & reel

SPECWAVE RF IN RF OUT QBH-8921 0524A

Amplifiers | Broadband Power Amplifiers

• QB-904

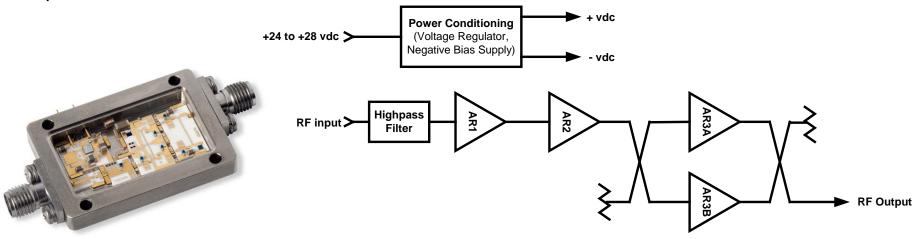
- Class AB, 3 stage design
- +24 VDC/900 mA @ Pout
- Balanced architecture for good VSWR
- Combination of PHEMPT and GaN device technologies in die form
- 35 dB gain with 4 watts Pout

Parameters (Typical at 25°C)	Power Amplifier Models		/pical at 25°C) Power Amplifier Models		
Amplifier Series	QB-904 (4 watt)	QB-910 (1/2 watt)	QB-909 (Medium Gain)		
Frequency Range (MHz)	2,000-6,000	2,000-6,000	2,000-6,000		
Gain (dB)	35	27	17		
Gain Flatness (dB)	+/- 2.5	+/- 2.0	+/- 1.0		
Power Output (dBm)	+36	+28	+19		
DC Voltage (Vdc)	23-29	23-29	8		
DC Current (mA Quiescent)	285	185	100		
Noise Figure (dB)	8	7	5.5		
RF Input/RF Output Connector	SMA Female or Gold Plated 0.015 pin				
DC Input	SMA Female or Gold Plated 0.015 pin				

Amplifiers | Performance

Medium Power

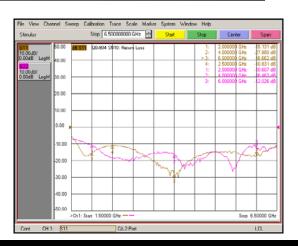
- Frequency range 1 MHz to 6 GHz
- Hybrids are class A with output powers up to 4 watts @ P1dB
- Connect parallel stages in a push-pull or balanced configuration
 - Design miniature 90° hybrid couplers and baluns adjust the windings to optimize parameters
 - Topology distributes heat throughout the package

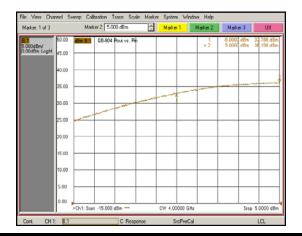


Amplifiers | QB-904 Performance, 4 watts 2-6 GHz

• QB-904


- 3 Stage Amplifier with Internal Voltage Regulation
- Class AB Biased for Radar, Jammers, Communications Transmit Applications
- Balanced Output Stage for Good Broadband Output Return Loss
- 4 watts Output Power over 2 to 6 GHz Band
- Filtered Input (18 dB/Octave filter roll-off)
- Latest Gallium Nitride (GaN) device Technology
- 38 dB Small Signal Gain
- Connectorized or Printed Wiring Board Mount (solder attach 0.015" pins)
- Small Size
- Optional Heat Sink Available



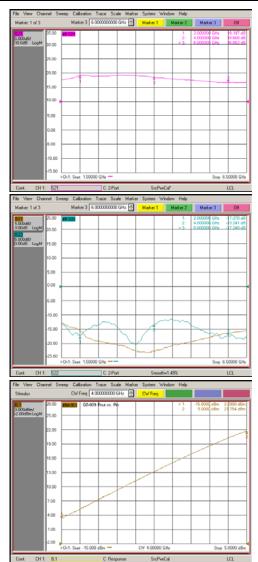


Amplifiers | QB-904 Performance, 4 watts 2-6 GHz

Parameters (Typical at 25°C)	Typical Specifications	
Frequency Range	2.0 to 6.0 GHz	
Small Signal Gain	38 dB	
Gain Flatness	+/- 3.0 dB	
Input Loss Return	10 dB	
Output Return Loss	12 dB	
Output Power (Psat)	+36 dBm	
DC Voltage (Vdc)	+23 to +29 VDC	
DC Current (mA Quiescent)	285 mA	
Noise Figure (dB)	8 dB	and the second division of the
RF Input/Output Connector	SMA Female or Gold Plated 0.015 pin	
DC Input Connector	SMA Female or Gold Plated 0.015 pin	

Amplifiers | QB-910 Performance, 0.5 watts 2-6 GHz

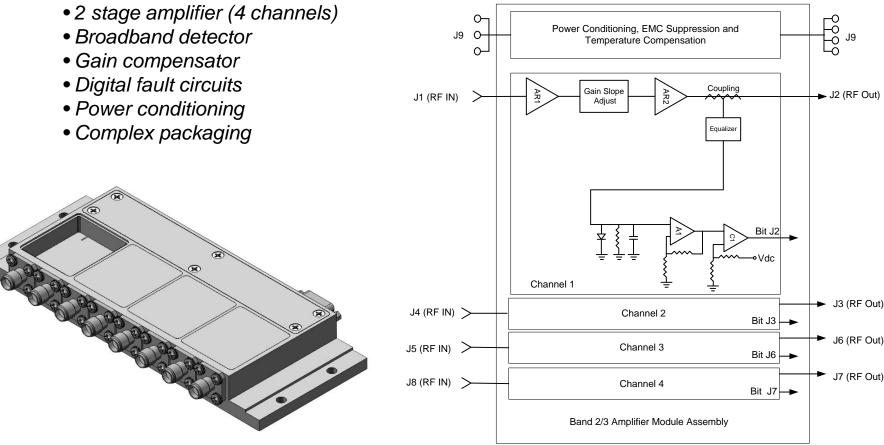
Parameters (Typical at 25°C)	Typical Specifications
Frequency Range	2.0 to 6.0 GHz
Small Signal Gain	27 dB
Gain Flatness	+/- 2.0 dB
Input Loss Return	10 dB
Output Return Loss Output Power (Psat)	8 dB +28 dBm
DC Voltage (Vdc)	+23 to +29 VDC
DC Current (mA Quiescent)	185 mA
Noise Figure (dB)	8 dB
RF Input/Output Connector DC Input Connector	SMA Female or Gold Plated 0.015 pin SMA Female or Gold Plated 0.015 pin



Amplifiers | QB-909 Performance 19 dBm, 2-6 GHz

Parameters (Typical at 25°C)	Typical Specifications
Frequency Range	2.0 to 6.0 GHz
Small Signal Gain	17 dB
Gain Flatness	+/- 1.0 dB
Input Loss Return	12 dB
Output Return Loss	12 dB
Output Power (Psat)	+19 dBm
DC Voltage (Vdc)	+8 VDC
DC Current (mA Quiescent)	100 mA
Noise Figure (dB)	5.5 dB
RF Input/Output Connector	SMA Female or Gold Plated 0.015 pin
DC Input Connector	SMA Female or Gold Plated 0.015 pin

- Single stage amplifier
- Class A biased for radar, jammers, communications transmit applications
- P1dB +18 dBm over 2-6 GHz band
- 18 dB small signal gain
- -Connectorized or printed wiring board mount (solder attach 0.015" pins)
- Small size, hermetically sealed



Amplifiers | High Frequency Integrated Amplifiers

• QB-911

- Frequency 2-18 GHz (4 phase tracked amplifier assemblies)
- Consists of...

Quality & Reliability

ISO 9001:2000 Quality Operating System

• MIL-PRF-38534 Product Screening and qualification capability

- Device screening and groups A, B, C, and D qualification (when required by order)
- Environment testing per MIL-STD-883 test methods

Other specifications guidelines

- J-STD-001 Class 3 and IPC-A-610, for eutectic attach and general soldering processes - IPC-7711 and IPC-7721, for rework and authorized repair operations

Quality assurance programs

- Calibration recall program for test and measurement equipment
- Facility ESD program
- Failure analysis and corrective action system
- Internal ISO audit program
- Operator training program

105-A