

Brand Name		NICKEL 99.2				
Material Code		2.4066				
Abbreviation		Ni 99.2				
Chemical Composition (mass components) in %						
Ni						
≥ 99.2						

Form of Delivery NICKEL 99.2 is supplied in the form of round wires in the range 5,0 to 0,05 mm Ø in bare or enamelled condition, also with

rayon or silk covering, and in the form of stranded wires.

Properties and Application Notes

NICKEL 99.2 is especially characterized by very high resistance to oxidation and chemical corrosion, relatively low resistivity and a very high temperature coefficient. The material is used in many different applications, for example for the manufacture of connections for heating elements. NICKEL 99.2 is magnetic up to approx. 360 °C. The maximum working temperature in air is 700 °C.

Electrical Resistance in Annealed Condition

Temperature coefficient of electrical resistance between	Electrical resistivity in: $\mu\Omega$ x cm (first line) and Ω / CMF (second line) Reference Values						
0° C and 100° C 10 ⁻⁶ /K	20 °C tolerance± 10 %	100 °C	200 °C	300 °C	400 °C	500 °C	
+ 4700 to + 5800	9 54	13 78	19 114	26 156	33 199	38 229	

Physical Characteristics (Reference Values)

,		Melting Point	Specific heat at 20 °C	Thermal Average linear thermal conductivity ¹⁾ expansion coefficient between at 20 °C 20 °C and		Thermal EMF against copper at 20 °C	
g/cm³	lb/cub in	°C	J/g K	W/m K	100 °C 10 ⁻⁶ /K	400 °C 10 ⁻⁶ /K	μV/K
8,.9	0.32	1440	0.47	69	13	14	- 23

Strength Properties at 20 °C in Annealed Condition

Tensile Strength 2)		Elongation ($L_0 = 100$ mm) % at nominal diameter in mm				
MPa	psi	0.02 to 0.063	>0.063to0.125	> 0.125 to 0.5	> 0.5 to 1	> 1
450	65250	≈ 10	≈ 15	≈ 18	≥ 20	≥ 25

- 1) As with all pure metals, the thermal conductivity strongly depends on the purity and temperature.
- 2) This value applies to wires of 2 mm diameter. For thinner wires the minimum values will substantially increase, depending on the dimensions.

General Note

NICKEL 99.2 is not a standard resistance alloy. Therefore no resistance values are quoted. The weight values correspond to those of ISOTAN® wires of the same diameter.

Notes on Treatment

NICKEL 99.2 can be worked easily. This alloy can be soldered and brazed without difficulty. All known welding methods can be used.